Animate a 2D tour path with density contour(s) and a scatterplot.
display_density2d(
center = TRUE,
axes = "center",
half_range = NULL,
col = "black",
pch = 20,
cex = 1,
contour_quartile = c(0.25, 0.5, 0.75),
edges = NULL,
palette = "Zissou 1",
...
)
animate_density2d(data, tour_path = grand_tour(), ...)
if TRUE, centers projected data to (0,0). This pins the center of data cloud and make it easier to focus on the changing shape rather than position.
position of the axes: center, bottomleft or off
half range to use when calculating limits of projected. If not set, defaults to maximum distance from origin to each row of data.
color to use for points, can be a vector or hexcolors or a factor. Defaults to "black".
shape of the point to be plotted. Defaults to 20.
size of the point to be plotted. Defaults to 1.
Vector of quartiles to plot the contours at. Defaults to 5.
A two column integer matrix giving indices of ends of lines.
name of color palette for point colour, used by hcl.colors
, default "Zissou 1"
other arguments passed on to animate
and
display_density2d
matrix, or data frame containing numeric columns
tour path generator, defaults to 2d grand tour
animate_density2d(flea[, 1:6])
#> Converting input data to the required matrix format.
#> Using half_range 66
animate(flea[, 1:6], tour_path = grand_tour(), display = display_density2d())
#> Converting input data to the required matrix format.
#> Using half_range 66
animate(flea[, 1:6],
tour_path = grand_tour(),
display = display_density2d(axes = "bottomleft")
)
#> Converting input data to the required matrix format.
#> Using half_range 66
animate(flea[, 1:6],
tour_path = grand_tour(),
display = display_density2d(half_range = 0.5)
)
#> Converting input data to the required matrix format.
animate_density2d(flea[, 1:6], tour_path = little_tour())
#> Converting input data to the required matrix format.
#> Using half_range 66
animate_density2d(flea[, 1:3], tour_path = guided_tour(holes()), sphere = TRUE)
#> Converting input data to the required matrix format.
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> Value 1.582 0.0 % better
#> No better bases found after 25 tries. Giving up.
#> Final projection:
#> -0.766 0.239
#> -0.601 -0.596
#> 0.228 -0.767
#> Using half_range 65
animate_density2d(flea[, 1:6], center = FALSE)
#> Converting input data to the required matrix format.
#> Using half_range 323
# The default axes are centered, like a biplot, but there are other options
animate_density2d(flea[, 1:6], axes = "bottomleft")
#> Converting input data to the required matrix format.
#> Using half_range 66
animate_density2d(flea[, 1:6], axes = "off")
#> Converting input data to the required matrix format.
#> Using half_range 66
animate_density2d(flea[, 1:6], dependence_tour(c(1, 2, 1, 2, 1, 2)),
axes = "bottomleft"
)
#> Converting input data to the required matrix format.
#> Using half_range 66
animate_density2d(flea[, -7], col = flea$species)
#> Converting input data to the required matrix format.
#> Using half_range 66
# You can also draw lines
edges <- matrix(c(1:5, 2:6), ncol = 2)
animate(
flea[, 1:6], grand_tour(),
display_density2d(axes = "bottomleft", edges = edges)
)
#> Converting input data to the required matrix format.
#> Using half_range 66